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Abstract. The theory of a rectangular quantum well in an external electric field is formulated 
in terms of surface Green function matching. This yields both the Green function and the 
wavefunction, and provides a practical method for the calculation of physical properties. 
The limits of validity of the equivalent-infinite-well approximation are studied. Applications 
to finite wells include the analysis of experimental data on the Stark shift of exciton peaks 
and quenching of the photoluminescence by the external field. The importance of an accurate 
estimate of the wavefunction for the electro-optical properties is stressed and demonstrated 
in practical terms. 

1. Introduction 

Fuelled by the growing interest in quantum well phenomena for semiconductor hetero- 
structures there has been a renewed effort to understand the quantum mechanics of 
these systems on the basis of simple models. Basically, the calculation concerns the 
problem of matching at two inter-dependent interfaces; this is also true if the inter- 
mediate material is a barrier. 

The purpose of this paper is to propose a matching technique that yields the Green 
function (GF) of the system and, on the basis of this technique, a practical method for 
performing calculations. The problem of a quantum well in an external electric field is 
also taken up. Section 2 presents the formal analysis leading to the secular equation. 
Section 3 contains an assessment of the limits of validity of the infinite-barrier approxi- 
mation, while 0 4 contains some examples of practical applications to the analysis of 
Stark shifts of excitonic peaks and to the quenching of the photoluminescence by the 
external electric field. The latter is more sensitive to the accuracy of the calculation, as 
it involves explicitly the field-dependent wavefunctions. Some conclusions are presented 
in § 5 .  

2. Surface GF matching analysis for a quantum well 

Consider a composite system of the form A-L-B-R-C. Let Gj (j = 1 , 2 , 3  in cor- 
respondence with A, B, C) be the GF for infinite mediumj. We concentrate on the layer 
B (G2) and define the sum of the left (L) and right (R) interfaces as the projection domain. 
We want to construct the GF, G,, of the system under study, starting from GI,  G 2 ,  G3, 
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which are presumed to be known. A given G is a function of two position-in-space 
arguments ( x ,  x ’ ) .  Let GL denote that x 3  = x i  = x ~ ( L ) ,  GL+ that x 3  = x ~ ( L ) ,  x i  = x ~ ( R )  
etc. Then define the 2 x 2 matrix projections 

and likewise for G, and G ; l .  Let Pi denote the projector onto the part of the space 
that is occupied by the material having GF Gj.  We define the external projector P, = 
PI + P3. The complete G ,  can be related to its own projection G, in exactly the same 
manner as for a general ABC sandwich formed from discrete media (Garcia-Moliner 
and Velasco 1986b, c): 

P2GsP2 = P2G2P2 + P2G2G;’(GS - G2)GT1G2P2 

P,G,P2 = P,GeG,’G,G;’G2P2 (2) 

where 

There is a dual set of formulae with e and 2 interchanged. From the diagonal parts of 
G, one can calculate the spectral functions of interest, e.g. total or local density of 
states, while the secular equation for the well modes is 

det G;’ = 0. (4) 

Here Fourier transforms parallel to the interfaces are understood to be taken, so G ,  
is a function of ( K , E ) .  The problem is reduced to finding G, and in this lies the 
difference between discrete and continuous media. 

In terms of wavefunctions, having matched q-which ensures continuity of the 
probability density-one must in general match m-’q’, thus ensuring continuity of 
the current density. On going over to GF matching this results in the matching of G(x3,  
x i )  and m-”G(x3, x i ) ,  where x 3  is the spatial coordinate normal to the interfaces and 
the prime preceding G denotes differentiation with respect to the first argument. 
Expressing the matching condition at the L and R interfaces and proceeding as in 
Garcia-Moliner and Velasco (1986a), we find 

where 
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The secular equation is then 

BLLBRR - BLRBRL = 0. 

This yields the eigenvalues for an arbitrary quantum well, where A and C need not 
be the same. 

The signs and factors in ( 5 )  are in accordance with the following convention: let 
Xj be the Hamiltonian of medium j 

X, = - (fi2/2mj)V2 + V 1 ( x 3 )  

then 

(EZ - Xl)Gj  = S ( X ,  - x i ) .  

After Fourier transform parallel to the interfaces, E is actually to be understood as 
E + h2~’/2m1. With this convention the discontinuity in the normal derivative is 

’%j+) - I = - 2m1/fi2, (11) 
In practice we shall be interested in the ground level (K = 0) of the energy sub-bands 
for the quantum well, so we shall simply write E. 

The description of the barriers for x3  < 0 and x3 > L involves the question of the 
boundary conditions away from the well. An electric field from --r: to +m would 
correspond to incoming flux at one end and outgoing flux at the other end and this 
does not actually correspond to the experimental arrangement, in which there is no 
charge flow through the sample. In the calculations for these systems it is customary 
to eliminate the electric field from the asymptotic limits by putting either constant 
potentials or infinite barriers at x3 = -D and x3  = L + D ,  where D is a conveniently 
large distance. This keeps the electric field outside the well but allows a calculation in 
terms of stationary states, i.e. real eigenvalues. In fact the results do not show any 
significant difference if the field outside the well is omitted altogether-this has 
been checked here for fields attained in actual experiments-unless one is explicitly 
interested in lifetime effects, which are outside the scope of this paper. Thus for an 
electric field % exerting a force, F = e% on the electron, we shall define the outside 
potential to be a constant equal to V I  for x3  s 0 and to Vl + FL for x3  a L. There 
is no difficulty in including the field outside, but this complication is really unnecessary 
for the issues we wish to discuss. 

In order to carry out the operations indicated in (4)-(6) it is necessary to know the 
Gs involved. For regions 1 and 3 we simply use the GF of a free particle of mass ml 
in a constant potential, with V3 = V ,  + FL, as explained. G 2  is discussed in the 
Appendix. Using either (A8) or (A10) we obtain the secular equation 

{ K  - [ ( a ~ )  ‘I3 /m21 C; (zO>/c2 ( z o ) > { ~  + [ ( a ~ )  ‘I3 /m21c; ( z L  >/cl ( z L  >>c2 (z0)c1 ( z L )  
= { K  - [ ( a ~ P ~ / m ~ i ~ ;  (zo)lcl ( zO)> 

x { K  + [ ( a ~ )  lm21 C; (zdlc2 ( z L  >>G ( 2 0 1 ~ 2  ( z L )  (12) 

where, selecting the energy origin in such a way that V1(x3  = 0) = 0 and V2(x3  = 0) = 
U0 , 
K =  (21El/mlh2)1/2 

ZL = (aF)1’3[L - U0 - lEI)/Fl 

zo = - ( U F ) ~ / ~ ( U ~  - I E ~ ) / F  
a = 2m2/ii2. 

(13) 
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At this point it is convenient to introduce the dimensionless parameters 

y = 2m2 UoL2/h2 

U = F L / U o  
E = /EI/Uo 

a = m2/m1 
where U. is the barrier height, i.e., V1 - V 2  at x3 = 0. Then ( 1 2 )  simplifies to 

[(a&Yr>’/2 - (~Y>1/3F1(zo>l[(~EYy>’/2 + (uY)1’3FT ( Z L ) I  

= [ ( a E Y P 2  - ( u y P 3 F T  (zo)I[(@&Y)1’2 + (uY>1’3F1(ZL)1F2(ZO)F2* ( Z L )  

where 

F l ( z )  = (Ai(z)Ai’(z) + Bi(z)Bi’(z) + in-’)/(Ai2(z) + Bi2(z)) 

= (UY) 1’3 ( f l ( Z >  + if2 (2)) 

= g l ( z )  + ig2(z). 

F 2 ( z )  = [2Ai(z)Bi(z) + i(Ai2(z) - Bi2(z))]/(Ai2(z) + Bi2(z)) 

Finally, with L(z) = (a~y) ’ / ’  t f l  ( z ) ,  the real part of ( 1 5 )  becomes 

( A - ( Z o P + ( Z d  -f2(zolf2(zL))(1 - gl(zo)gl(zL) - g2(zo)g2(zL))  

- ( ~ - ( Z O ) f 2 ( Z L >  + A + ( Z L l f 2 ( Z o ) ) ( g l ( Z o ) g 2 ( Z L )  

- g l ( z L k 2 ( Z o ) )  = 0. 
Because g:(z) + g ; ( z )  = 1 ,  the imaginary part of ( 1 5 )  is equivalent to ( 1 7 ) .  

In the zero-field limit, 

2o = -(Uy)1/3(1 - E ) / U  ZL = ( u y ) i / 3 ( u  + E - l ) / U  

both become large and negative (since in our case 0 < E < 1). By utilising the asymp- 
totic behaviour of the Airy functions in this limit 

we find that (17) becomes 

[ (a  - I)& - 11 sin{[(I - ~ ) y ] ’ / ~ }  + 2 [ a ~ ( 1  - E ) ’ / ~ ]  cos{[(I - ~ ) y ] } ’ / ~  = o ( 2 0 )  

which, for a = 1 is the well known transcendental equation for the bound states of a 
square well. 

3. The infinite-barrier well 

In order to simplify the calculation, a given quantum well of finite barrier height and 
thickness L is often replaced by a well with infinite barriers with some parameter 
adjusted so as to reproduce the zero-field ground state exactly. For zero field G, 
vanishes and, if G is the GF of the medium inside the well, then it follows from (2)  
that the secular equation is 

det G = 0. ( 2 1 )  
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Using either (AS) or (A9) this yields 

Ai(zb)Bi(zL) - Ai(zi)Bi(zb) = 0 (22) 
where z;l and z ;  are given by (A6) with V = 0. This equation was first derived 
independently by Trallero-Giner and L6pez-Gondar (1986) and by Matsuura and 
Kamizato (1986). The former found that the equivalent infinite well can account for 
the experimental results of Wood et a1 (1984) and of Alibert et a1 (1985)-the Stark 
shift of excitonic peaks-if the effective mass of the carriers in the well is the adjustable 
parameter. All other authors choose to adjust the thickness of the well, which appears 
to be more intuitive. However, the point is that the first choice requires small mass 
changes, whereas it will presently be seen that replacing L by an ‘equivalent’ L’  > L 
leads in practice to impossibly high values of L‘. The question of the accuracy of the 
results obtained with the fictitious equivalent infinite well has been discussed in detail 
(Fritz 1987). While it would seem that this approximation appears to be reasonable 
in practice, it is important to note that this analysis is based on fitting L’  for zerofield 
and then using this one value of L’ for all % f 0. Moreover, only the eigenualue is 
studied, while the ‘equivalent’ well is often used as a simpler model using which one 
can study, say, optical absorption (Matsuura and Kamizato 1986, Ahn and Chuang 
1987), for which one needs the wauefunction. At the very least one ought to find L’(%) 
for each value of % if one expects to obtain a reasonable approximation for the 
wavefunction q, as the details of the dependence on % of I$ are very important for 
the electro-optical properties of the well. 

Figure 1 shows the situation for the well used in the experiments of Wood et al 
(1984). The thicker curve gives the ground-state (K = 0) eigenvalue of the lowest sub- 
band as a function of 8 for the finite well, calculated from (17). The family of thin 
curves give this eigenvalue for different values of L‘ using (22) for the ‘equivalent’ 
infinite well. The value of L’ needed to fit the ground-state eigenvalue at each % is 
obtained from the intersections with the thin curves. The result is shown in figure 2. 
At zero field L‘ is very close to L ,  but as % increases L’  increases very steeply until a 
critical value U ,  is found, which requires L ’ +  w. In this case U ,  = 0.18, while in the 
experiments values of U up to 0.31 were attained. 

Figure 3 shows ,!,’-or, rather A = L’/L-versus % for the cases studied by Fritz 
(1987), by Matsuura and Kamizato (1986) and by Ahn and Chuang (1987), while table 
1 compares the corresponding values of U ,  with the highest or typical fields attained 
in practice in the cases under study. It is clear that the simplification of the equivalent- 
infinite-well model involves very severe shortcomings in practice and that, especially 
where the dependence on 8 of I$ is important, it is necessary to do better in order to 
obtain the wavefunction. This will be discussed again in Q 4.2. 

4. Practical applications 

We shall consider QWS in which the well material is GaAs and the barrier material is 
A1 Gal-.As for x < 0.4, i.e. a direct-gap material. The study will then be centred on 
vertical transitions between hole and electron states with K = 0. In the effective-mass 
approximation for K = 0, if k - p  coupling between conduction and valence bands is 
neglected the bands may be decoupled for zincblende structure semiconductors (Alta- 
relli 1985). This approximation, which is widely used, will also be used here. Practical 
experience shows that it yields the correct eigenvalues (Pkrez-Alvarez et a1 1988) to 
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0 "c 0.42 0.84 
U 

Figure 1. Thin curves: the field dependence of the 
ground state-lowest sub-band-for an infinite 
well with different values of L' ( E  = E/U,; U = 
FL/U,). From top to bottom L' (nm) is 10, 12, 
13,14,15,m. Thicker curve: the field dependence 
of the exact eigenvalue for the finite well. The 
example corresponds to the experiments of 
Wood et a1 (1984). 

1 I I 

0.05 0.10 0.15 6c 
U 

Figure 2. The information contained in figure 1 
is cast as the dependence on 8 of A = L ' / L ,  
where L' is the fictitious thickness of the equiv- 
alent infinite well required to reproduce the %- 
dependent eigenvalue. 

3°C 

Figure 3. As figure 2 but for the three cases 
indicated in table 1. U 
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Table 1. A comparison of U, with the maximum or typical fields attained expressed as 
multiples of U in the second column and as multiples of Fe in the third column. 

Critical Maximum attained Corresponding B 
value (or typical) U (kV cm-I) 

0.228" 0.663b 
0.156c 0.443d 
0.139" 1 .057f 

250 
65 
35 

a Ahn and Chuang (1987) 

e Fritz (1987) 

West and Eglash (1985) 
Yamanaka et a1 1986 
Fritz et a1 (1986). 

Matsuura and Kamizato (1986) 

144ol- 

20 40 60 80 
1 (keV cm-')  

Figure 4. The Stark shift of the excitonic peak associated 
with the highest heavy hole and the lowest electron 
bands. Full circles: experimental results (Wood et a/ 
1984). Broken, chain and full curves: results calculated 
with band offset rules A, B and C, respectively-see 
the text. 

0.75 - 

- 
0 0.50 - 
1 e 
4 

+ 

0.25 - 

?i \ 

0 0.5 1.0 

I ( io5 v cm- ' )  

Figure 5. The integrated photolumin- 
escence intensity versus electric field, 
normalised with respect to zero-field 
conditions. Full circles: results of the vari- 
ational calculation of the overlap between 
electron and hole wavefunctions (Vida et 
a1 1987). Broken curve: from present cal- 
culation. 

an accuracy of a fraction of a meV compared with the results obtained with an eight- 
band model including remote-band effects to second order (Potz and Ferry 1985). 

For GaAs we use the effective masses commonly found in the literature (me = 
0.0665 mol mlh = 0.08 mo, m h h  = 0.45). For heavy holes it has been suggested that one 
should take instead m h h  = 0.34 (Miller et a1 1984). This will be considered presently. 
For the gap difference, which depends on x ,  we use the formula AEg = 
( 1 1 5 5 ~  + 370 x 2 )  meV (Lee et a1 1980). The question of the band offset rule has been 
abundantly discussed. Various proposals will be considered-see figure 4. Finally, for 



4346 D P Barrio et a1 

the effective masses in the ternary compound we use (Xu et a1 1983) 
m&) = (0.0665 + 0.0835x)me(0) 
m]h(X) = (0.08 f 0.057x)mlh(0) 
mhh(X) = (0.45 + 0.302x)mhh(O) 

except that 0.45, for heavy holes, may be replaced by 0.34, as indicated. 

4.1. The Stark shift of excitonic peaks 

Figure 4 shows the experimental data of Wood et a1 (1984) for a QW for which L = 
9.5 nm and x = 0.32. The curves were calculated from (17) by using the value of 
8.3 meV for the exciton binding energy (Greene et al 1984) and neglecting its depen- 
dence on % (Brum and Bastard 1985). The three different curves, related to rules A, 
B, C, correspond to different proposals that have been made for the band offset. On 
these purely empirical grounds we shall adopt rule B (Wang et a1 1984), i.e. the 65- 
35 rule, meaning that the band-edge discontinuity is 65% of the total AEg for the 
conduction band. The results are very close to those obtained with rule C, i.e. the 57- 
43 rule (Miller et a1 1984), the largest difference being of order and the same 
was found in other cases for which calculations were also performed. Yet another 
empirical rule for the band offset, namely the 62-38 rule, has been proposed by 
Watanabe et a1 (1985). It is clear that anything in the neighbourhood of 60-40 is 
reasonable, and that small differences are unimportant. 

Table 2 shows the experimental results of Collins et a1 (1986) and the values 
calculated from (17) with the 65-35 band-offset rule and with the two values 0.45 and 
0.34 for the heavy-hole effective mass. The second column gives the values of U for 
the hole well, which is much more sensitive than the electron well to the effect of the 
electric field. All transitions involve the lowest electron sub-band and the different 
hole bands indicated in the tables. Note that for the highest fields U = 0.89, which 
means a very high effective field, and still the agreement with experiment is quite 
good, with a maximum deviation of 3.6%. It is seen that the difference between the 
results obtained by using the two values for mhh is essentially irrelevant. 

4.2.  The wavefunction: quenching of the photoluminescence 

It is seen in the above examples that the eigenvalues can be obtained to a good 
accuracy from a simple model, in agreement with general experience. Finding the 
dependence on % of the wavefunction is a more difficult problem, but is very important 
for studies of many electro-optical properties. We shall consider the quenching of the 
photoluminescence of a quantum well by an external electric field. As % increases, 
the electron and hole wavefunctions have increasingly separate confinements and their 
overlap decreases. The quenching of the photoluminescence is essentially due to this 
and thus the dependence on 8 of the wavefunction is important. 

The wavefunction Vs(x3) of a bound state of the quantum well can be obtained 
once Gs(x3 ,x ; )  is known, by taking residues in (2). Let qs be the two-component 
vector 

remembering that z = O/L for the L/R interfaces, and put 
{ q L  = V,s(O), @R = V S ( ~ ) }  
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Table 2. The position of the excitonic peak versus applied electric field. First column: %. 
Second column: Equivalent dimensionless strength U = FL/Uo. The experimental data are 
from Collins et a1 (1986). The transitions studied involve the lowest electron sub-band and 
the hole sub-bands indicated at the top. The figures in brackets below the calculated values 
give the fractional deviation [(E,,,, - Eexpt) /Eexpt]  x 100. 

1-hh 2-hh 

% (104Vcm-') u(h)  Calc.? Expt Ca1c.f Ca1c.t Expt Ca1c.S 

4.86 0.26 

6.29 0.33 

7.24 0.38 

8.43 0.44 

9.62 0.50 

12.00 0.68 

14.38 0.75 

16.76 0.87 

19.14 0.89 

1554 1553 

1552 1548 

1550 1544 

1548 1539 

1545 1533 

1538 1518 

1530 1500 

1522 1480 

1513 1460 

(0.1) 

(0.3) 

(0.4) 

(0.6) 

(0.8) 

(1.3) 

(2.0) 

(2.8) 

(3.6) 

1588 

1588 

1587 

1587 

1586 

1584 

1581 

1577 

1573 

(-0.3) 

(-0.3) 

(-0.3) 

(-0.3) 

(-0.3) 

(0.1) 

(0.81 

(1.3) 

(1.7) 

1593 

1592 

1592 

1591 

1590 

1581 

1568 

1557 

1546 

1580 

1580 

1580 

1579 

1578 

1576 

1572 

1568 

1563 

(-0.8) 

(-0.8) 

(-0.8) 

(-0.8) 

(-0.8) 

(-0.3) 

(0.3) 

(0.8) 

(1.1) 

3-hh 1-lh 

% (lo4 V cm-') u(h) Ca1c.t Expt Ca1c.S Expt Calc. 

4.86 0.26 

6.29 0.33 

7.24 0.38 

8.43 0.44 

9.62 0.50 

12.00 0.68 

14.38 0.75 

16.76 0.87 

19.14 0.89 

1572 1576 

1636 1648 1620 1568 1574 

1636 1647 1619 1564 1573 

1635 1645 1619 1560 1571 

1554 1569 

1542 1564 

1528 1558 

1508 1551 

1490 1543 

(0.2) 

(-0.7) (-1.7) (0.4) 

(-0.7) (-1.7) (0.6) 

(-0.6) (-1.6) (0.7) 

(1.0) 

(1.4) 

(2.0) 

(2.9) 

(3.6) 
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Taking residues in (2) for x3 G 0: 

Ijfs(x3) = G l ( X 3 ,  o)G;I!qL (x3 0) (25)  
where G 1 L  = G1(O, 0). Now take residues in (2) for 0 S x3 s L and note that (4) is the 
secular determinant of the matching equations 

Then 

while 

V s (x 3 3 (x 3 > L,  GTF! $R (xg 2 L).  (28) 

$R = - [ r s . R R l - l r s , R L @ L  (29) 

Note that V3 # V ,  and thus G3 # G,. Now, from (28): 

and using this in (27) and (28) the wavefunction Vjl,(x3) is cast for all x 3  in terms of 
only one amplitude, namely VL. The information on the matching is contained in all 
the GF entering (25), (27) and (28), evaluated at the energy eigenvalue obtained from 
(4). The amplitude is obtained by normalisation-note that this depends also on 8- 
and thus the normalised wavefunctions for the electron and hole states involved in the 
transition under study are obtained exactly as functions of 8. Then the overlap 

can be evaluated as a function of 72 and compared with experimental data on the 
integrated photoluminescence intensity versus electric field. Figure 5 gives the results 
of such a calculation compared with those of a variational calculation and with the 
experimental data of Vida et a1 (1987), showing a definite improvement upon the 
variational calculation and a fairly good agreement with experiment-see the com- 
ments later. 

5.  Conclusions 

We have demonstrated the practical use of the surface GF matching analysis in studying 
quantum wells in external electric fields. The main factor, unless one is explicitly 
interested in lifetime effects, is the linear-variation of the potential inside the well. 
However, the same analysis can be equally extended to include the electric field 
outside. One then has quasi-stationary states with complex eigenvalues (E, + Si). We 
have performed some sample calculations and found that fractional deviations of E 
(stationary, real) from E, are typically of order and in extreme cases of order 
lo-’, no larger than the orders of magnitude given in brackets in table 2. These 
findings agree with results obtained from transfer-matrix calculations (Lago and Pkrez- 
Alvarez 1988). 

An analysis in terms of quasi-stationary states would be necessary in order to study 
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lifetime effects explicitly, as seen above for the high-field end of figure 5, but it proves 
unnecessary in practice for studying energy levels. In this context a remark concerning 
the basis of the theoretical approach is appropriate. Recently Austin and Jaros (1985, 
1987,1988) have clarified an apparent discrepancy from the work of Ahn and Chuang 
(1986) for high fields. The former authors use a scattering theoretic approach centred 
on the concept of phase shift, while the latter formulate the problem in terms of Airy 
functions of complex arguments. As stressed by Austin and Jaros (1988), the two 
approaches are complementary and the results are equivalent. Moreover, for some 
problems the scattering theoretic approach is the obvious one. These views are 
completely in line with those of the present work. On one hand, the GF matching can 
be identically cast as wavefunction matching, as demonstrated in 0 4.2. The results of 
Lago and Perez-Alvarez (1988), which also agree with ours, were actually obtained 
by working with Airy functions of complex argument. On the other hand the GF, the 
propagator, is a central concept in scattering theory. The very formal derivation of 
the surface GF matching analysis is scattering theoretic. Its relationship to the phase- 
shift analysis has also been discussed elsewhere (Garcia-Moliner and Flores 1979 , 
Dobrzynski et a1 1987). 

Once the GF G, of the system is known one can obtain from it all desired physical 
quantities. In particular we have stressed the importance of obtaining a good estimate 
of the wavefunction, which can also be readily obtained from G,, and which is related 
to the electro-optical properties. The frequently made approximation of replacing the 
actual well of thickness L by an equivalent infinite well of thickness L' could not 
produce a good approximation to I+9, as discussed in B 2. The calculation of the 
electron-hole overlap compares very well with experimental data on quenching of the 
photoluminescence by the external field and improves considerably upon the results 
based on a variational determination of I+9, as was to be expected. Of course this is 
only a test of the quality of the wavefunction, not a complete theory of the quenching 
of the photoluminescence, as lifetime effects have not been included and these should 
dominate for sufficiently high fields. In fact Kohler et a1 (1988) find, for a well that is 
fairly similar in composition and thickness, that this happens beyond about 80 kV cm-' , 
which checks with the situation seen in figure 5 .  We also note that the experiments 
analysed here were performed with samples consisting of five wells and it has been 
suggested (McIlroy 1986) that the results may differ considerably from those obtained 
for a single well. There would be no difficulty in doing the calculation for a MQW. 
Having found the GF for one well one can easily relate it to the transfer matrix (PCrez- 
Alvarez et a1 1988) and then treat any desired number of wells directly. However, the 
results shown in figure 5 would not lead one to expect any large differences, The 
findings of McIlroy (1986) could be different because of the very small value-2.5 nni- 
of the well thickness employed. In fact McIlroy repeated the calculations for L = 
7.5 nm and then found the effects much less pronounced. In this context it is interesting 
to note some recent experiments (Mendez et a1 1988) where well coupling effects are 
studied from low to high fields, again with narrow wells -3.0 nm well thickness, 3.5 nm 
barrier thickness in a GaAs-Gao 65A10 3 5 A ~  superlattice-leading to the formation of 
Stark ladders and associated phenomena. This is an interesting problem for further 
study. 

In conclusion we have demonstrated the practical use of the surface GF match- 
ing analysis to study quantum wells in external electric fields. The same method could 
be used with equal ease to study other problems, e.g. tunnelling across a bar- 
rier. 
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Appendix. The electric-field-dependent Green function 

Consider the one-electron Hamiltonian 

2t =p2/2m + Fx3 + V 

where V and F > 0 are constant. By translational symmetry the solution to 

[ - (h/2m) d 2  /dx: + F x ~  + V - E ] ~ E ( x ~ )  = 0 

VE(X3) = ( P O ( X 3  - E/F) .  

5 = (2mF/fi2) ‘I3 (x3  + V / F )  

Y” - EY (5 )  = 0. 

z = ( 2 ~ 2 F / h ’ ) ” ~ [ ~ 3  + ( V  - E) /F]  

(A21 

(A31 

(A41 

( 4  

(A61 

is 

In terms of the variable 

q0 satisfies the Airy equation 

Therefore, qE(x3)  is a linear combination of the Airy functions Ai@), Bi(z) with 

and the GF corresponding to (Al)  has the form 

(a,Ai(z) + Bi(z))(a; Ai(z’) + Bi(z’)) 

(a,Ai(z) + Bi(z))(a;Ai(z’) + Bi(z’)) 

x3 a x ;  

x3 <xi  
G ( x ~ x ;  ; E )  = N 

where the constants are determined by continuity and the jump condition. In addition 
we require that (A7) possess the proper zero-field limit. The unique solution satisfying 
these requirements is, with our sign conventions, 

where a = 2 4 7 5 ,  and 

(A91 C , ( z )  = Ai(z) - iBi(z) C,(z) = Bi(z) - iAi(z) = -iCr (z). 

To our knowledge, equation (A8) has not appeared in the literature before. However, 
equivalent GF satisfying other boundary conditions are known (Moyer 1973, Davison 
and Kolar 1985, Davison et a1 1980). 

The question of which boundary conditions should be used outside the well is 
discussed in the text. The main question concerns the well region, for which (A8) is 
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the G for an electric field % exerting on the electron a force F = e% in the positive 
direction. However, this corresponds to an infinite medium with the said electric field. 
In fact, provided the field is the correct one inside the well, the boundary conditions 
at the L and R interfaces are arbitrary (Perez-Alvarez et a1 1988). The simplest G one 
can write down is actually 

which can be equally appropriately used with evident economy of algebra. In fact it 
is easily verified that (A10) and (A8) yield the same secular equation (12), as they 
must. 
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